APPLYING EVIDENCE ON HEALTH AND BUILT ENVIRONMENT RELATIONSHIPS: HEALTH IMPACT ASSESSMENT TOOLS

Dr. Lawrence Frank, President, Urban Design 4 Health, Inc. Professor, University of British Columbia

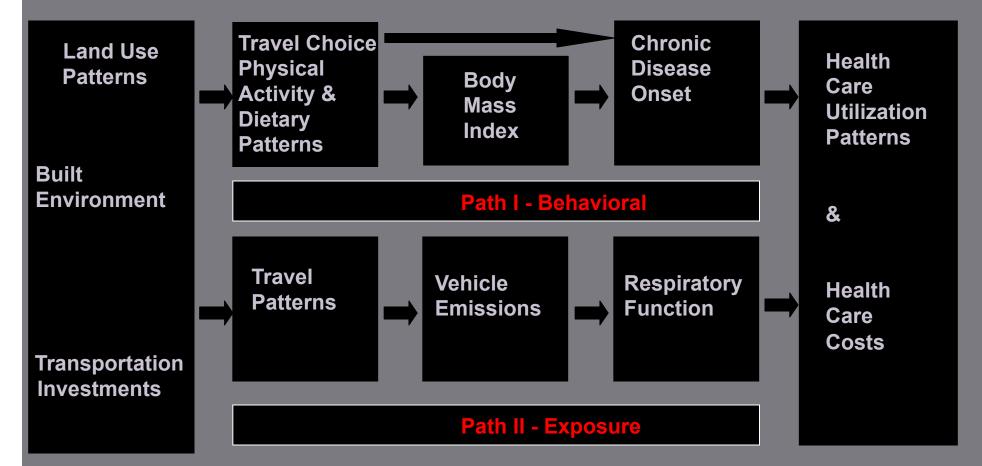
Health and Built Environment Evidence to Date

- 1) built environments play a role in shaping health outcomes and disparities
 - a) behaviors and b) exposures

2) Environments relate with health outcomes independent of preferences

or self selection

- relationship is at likely least partially causal

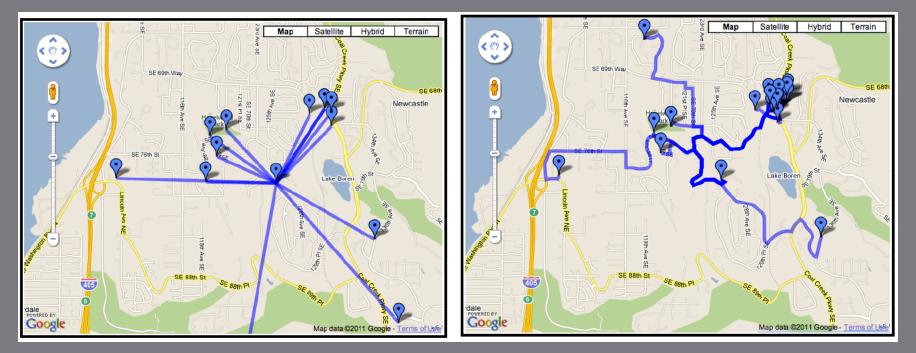

- 3) Built environment X Health relationships vary considerably across age, income, and gender
- Meeting physical activity guidelines and reduced risk of obesity are associated with transit use and more bikable and walkable environments

a) reduces odds of chronic disease onset for several morbidities

b) logically reduces demands on health care system and associated costs

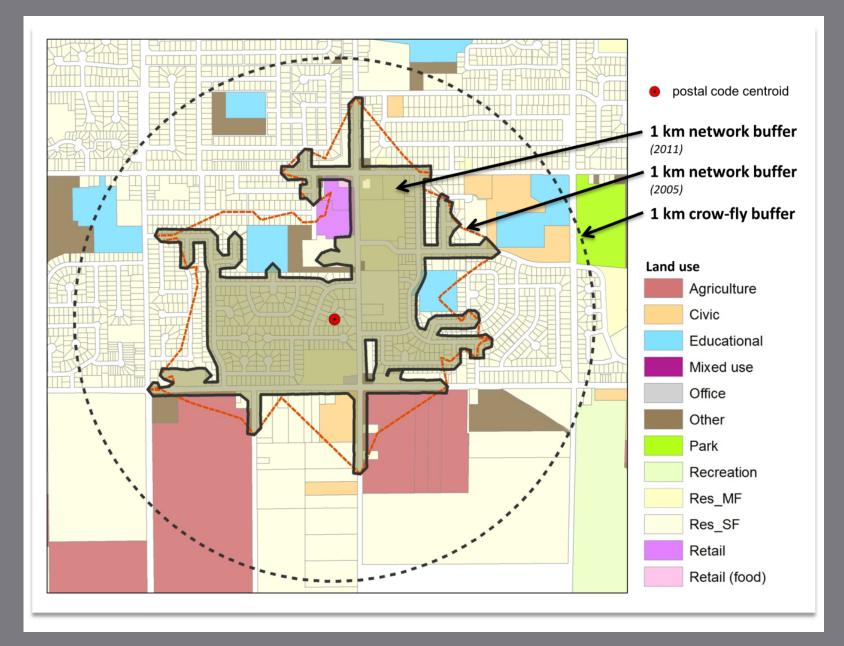
4) It is both *possible* and *timely* to monetize these costs

CONCEPTUAL MODEL

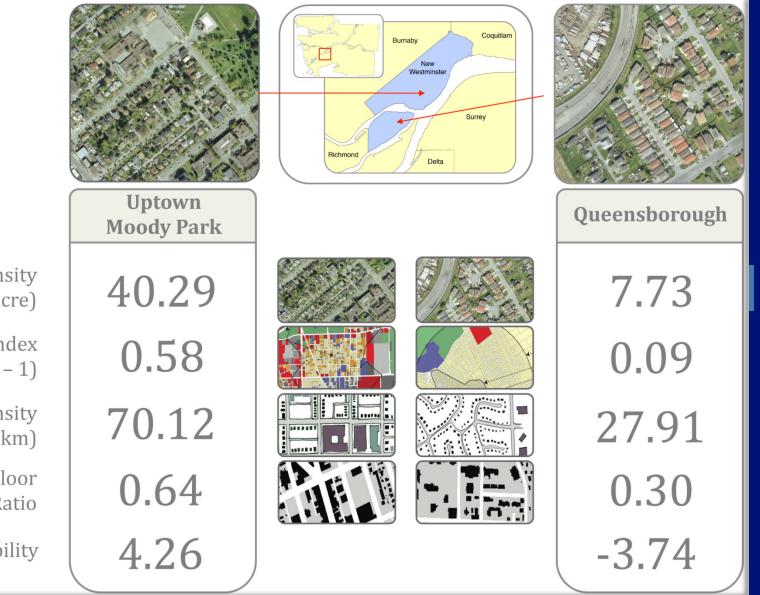


Note: Diet and nutrition, age, gender, income, genetics, and other factors also impact weight and chronic disease and to the extent possible are controlled in analyses. Vehicle age and climate impacts emissions and air quality, and respiratory function is also impacted by a variety of factors Dr. Lawrence Frank

Why Should we care? Health Care Costs Changes in health care system service delivery Affordable care act & Health District Planning **GHG** Impacts and Co-Benefits Energy Security Aging population need easy access to facilities Reduced response time increased efficiency of case management Meeting the growing unmet demand for walkable environments


Network Based WalkScore

 Implemented and tested airline versus network distance measurement for Walk Score:

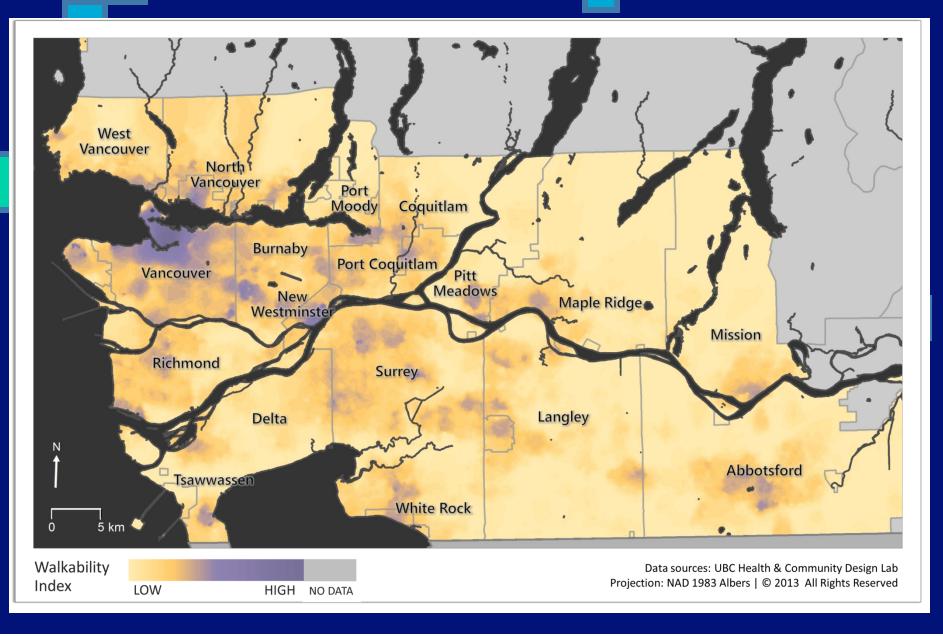


 Network method resulted in stronger bivariate association (as compared to airline method) with daily minutes of moderate or vigorous physical activity**, body mass index*, obesity, overweight**, and daily time spent in an automobile**
** = p < 0.01, * = p < 0.05

Measures Calculated Using 1 km Network Buffers

Comparing Two Communities

Net Residential Density (dwelling units/acre)

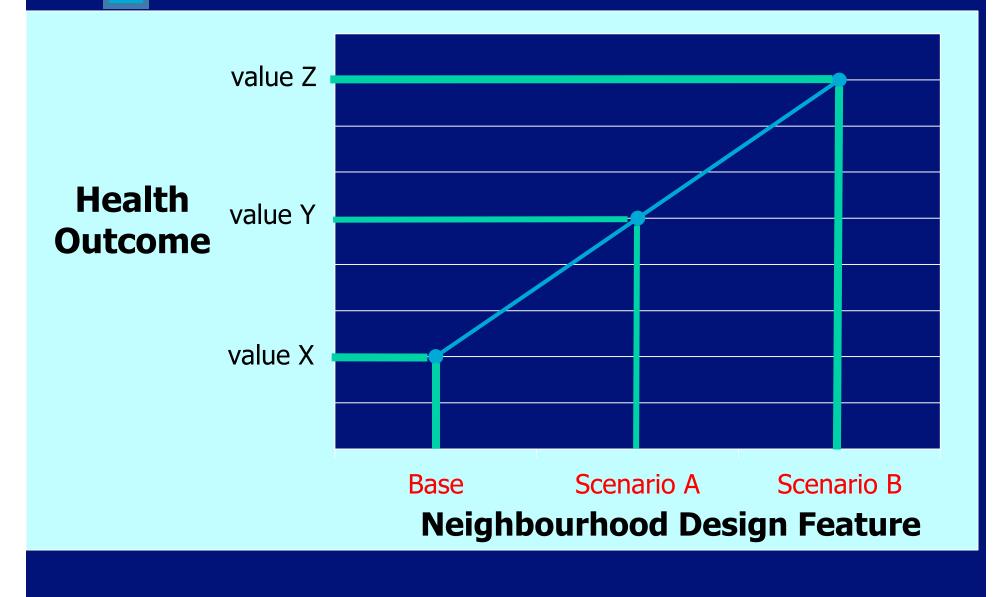

> Mixed Use Index (range 0 - 1)

Intersection Density (per square km)

> Retail Floor Area Ratio

Overall Walkability

2011 Vancouver Walkability Surface

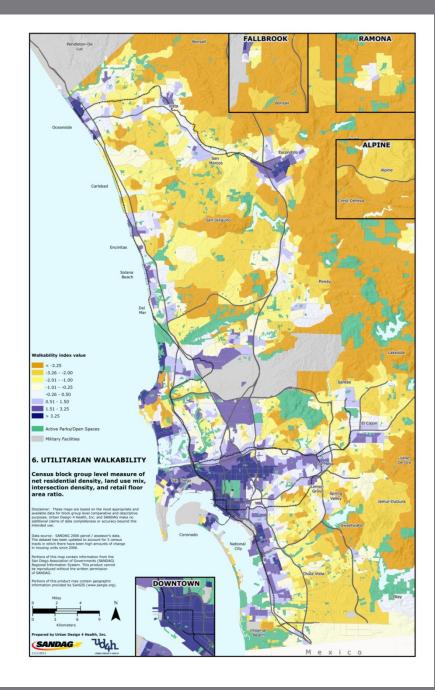


Researching the Relationships

Environmental Predictors Residential Density Land Use Mix Street Network Connectivity Retail Floor Area Ratio Sidewalk Continuity Regional Accessibility **Outcomes** Physical activity Obesity / Body Mass Index Transportation patterns Greenhouse gas -- CO2 Diabetes Cardiovascular Disease Pedestrian Safety

"Wiring" findings into existing software platforms including CommunityViz, Index, Urban Footprint

Calculated Outcome Changes


SANDAG Healthy Works CPPW / ARRA Grant

Utilitarian Walkability

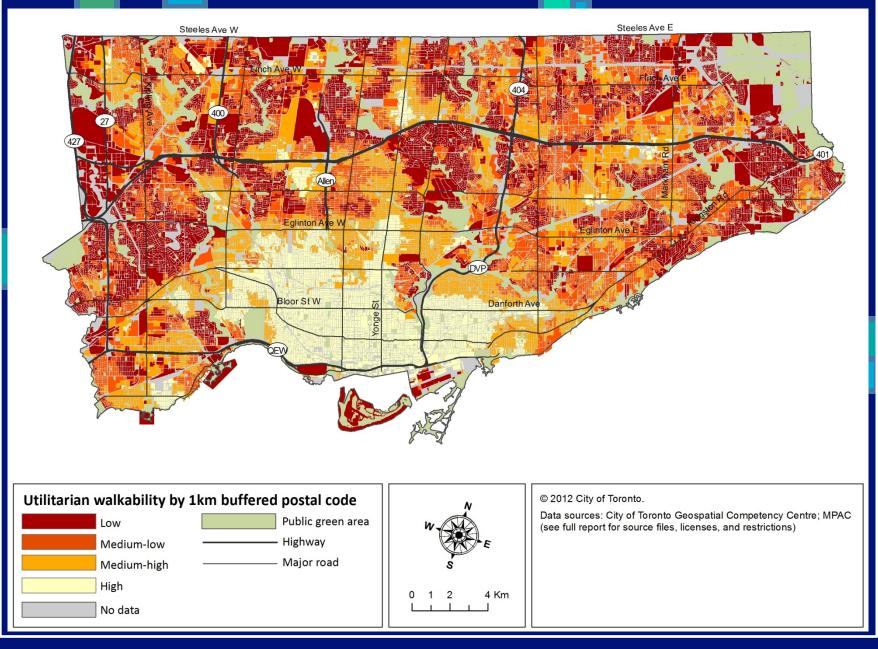
Made up of: Residential density, retail Floor Area Ratio, intersection density, land use mix

Regional walkability distribution, by block group

Innovations First large scale study to spatially match a prevalence (health outcome dataset - Calif. Health Interview Survey) with detailed parcel level built environment measures Piloted in San Diego County N= appx 18000 One of 3 efforts to date that have imported elasticities linking local (walkability) and regional accessibility (transit LOS) with chronic disease outcomes directly into a decision support tool Type II Diabetes, Cardiovascular disease, respiratory ailments along with obesity, physical activity levels Results forthcoming in several publications Tool operational, validated, and ready for use

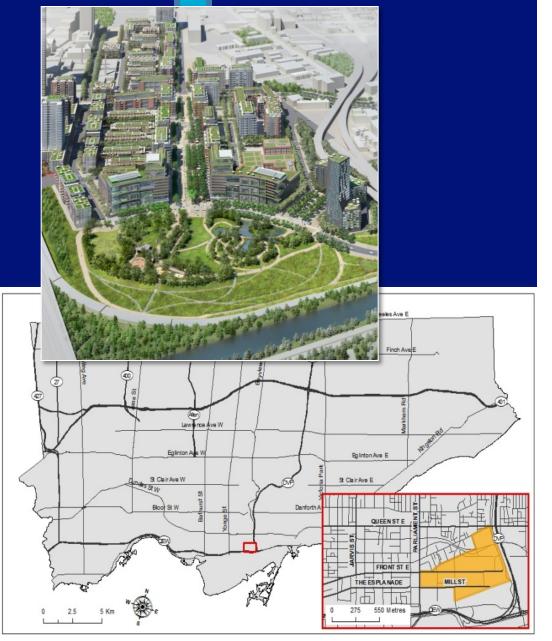

Case study – Palomar Gateway

- Neighborhood-scale, using a parcel-level tool
- Located just east of I-5 in southern Chula Vista
- 100 acres of vacant, retail, and industrial land near Palomar St, with residential to the north and south
- Identified in the City's 2005 General Plan as one of the top locations for infill and redevelopment
- Case study will test health impacts of potential Specific Plan alternatives


Built environment changes RESULTS ARE PRELIMINARY AND FOR ILLUSTRATIVE PURPOSES ONLY

Name	Base <u>Scena</u> rio	Change Scenario	Units
Single Family DU	192	80	housing units
Multi-Family DU	155	1626	housing units
Total Population	884	3841	people
Residential Area	44.3	68.5	acres
Net Residential Density	7.8	24.9	units/acre
Retail Floorspace	370073	395221	square feet
Retail Land Area	15.7	7.3	acres
Retail FAR	0.5	1.3	
Office Floorspace		41238	square feet
Office Area	0	1.2	acres
Office FAR		0.8	
Civic and Education Floorspace	0	20035	square feet
Recreation and Entertainment Floorspace	0	58393	square feet
Park Area	1.2	1.2	acres
Number of Schools	0	0	
Number of Transit Stops	3	3	
Number of Grocery Stores	1	2	
Total Road Centerline Miles	4.2	4.2	miles
Total Sidewalk Miles	4.5	5.5	miles
Sidewalk Coverage	53%	66%	
Total Bike Miles	0.5	1.2	miles

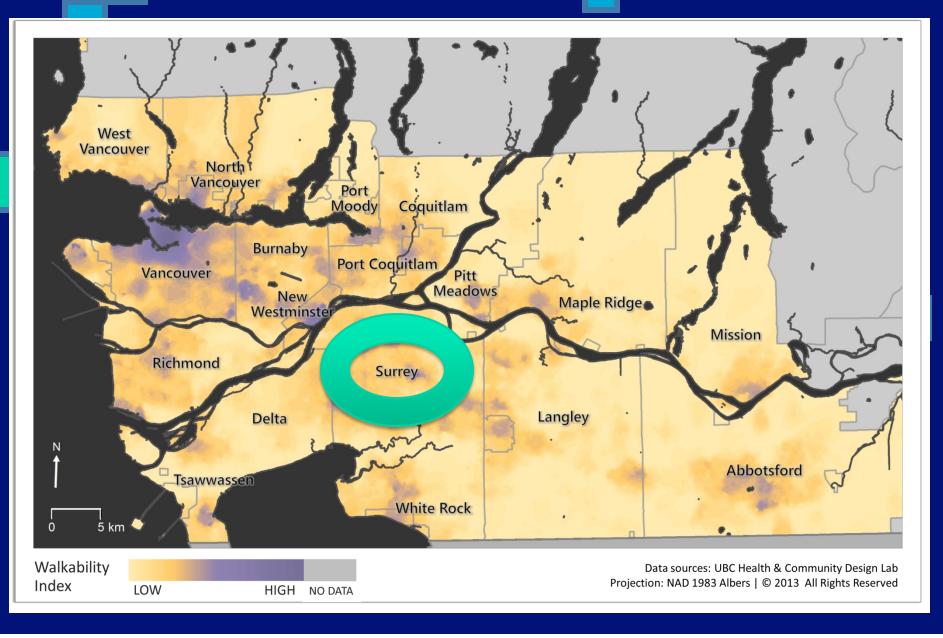
Change in health outcomes


	Base	Change	
Name	Scenario	Scenario	Units
Adult Transportation Walking	6.1	10.2	minutes per adult per day
Adult Leisure Walking	8.4	8.9	minutes per adult per day
Adult Leisure Moderate Physical			
Activity	17.3	18.4	minutes per adult per day
Adult Time in Private Automobiles	49.0	44.9	minutes per adult per day
Adult Body Mass Index	28.0	27.6	
Adults Overweight or Obese	69%	67%	
Adults Obese	33%	32%	
Adults with Type 2 Diabetes	8.6%	7.8%	
Adults with High Blood Pressure	31%	26%	
Adult Self-Rated General Health	3.2	3.3	scale of 1-5 (poor-excellent)
Adults Visiting a Park in the Last 30			
Days	57%	59%	in past month
Teen/child transportation walking	4.4	5.2	minutes per child/teen per day
Teens walking to/from school	44%	47%	
Teen moderate/vigorous physical			days with at least 60 minutes per teen per
activity	3.87	3.92	week
Teen body mass index	23.2	23.0	
Teen park visitation	31%	36%	in past month
Children walking to/from school	19%	24%	
Child body mass index	20.9	20.7	
Child park visitation	5.7	6.7	days per child per month
Pedestrian/bicycling risk factor	46.7	47.0	scale of 1-100 (low-high)

Toronto Walkability Index - 2011

West Don Lands (Toronto) Example

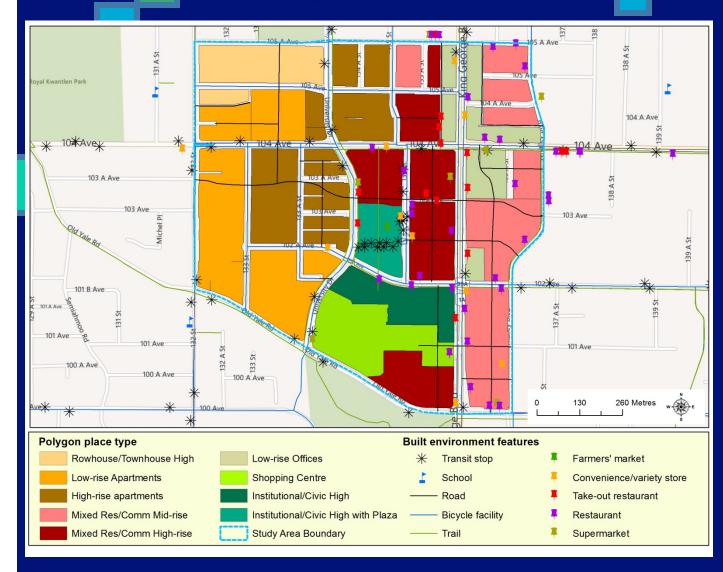
- Pilot study site for software tool application:
- Substantial planning already done
 - 80 acres
 - significant changes in built environment
 - dense/mixed use development
 - 6000-6500 housing units
 - 1 million sq ft of office/retail
 - 2 new streetcar stops
 - new park space
- Redevelopment is part of revitalizing Toronto's waterfront
- Site of athlete's village for Pan American Games (2015)


Outcome Changes – West Don Lands

Outcome	Study Area*		City**
	Base	Future	Base
average active trips /person/day	0.2	0.4	0.1
average transit trips /person/day	0.6	0.7	0.5
average automobile trips/person/day	1.0	<u>0.6</u>	1.3
average trip kilometers/ person/day	18.2	<u>15.9</u>	22.6
average CO2 generated (kg/HH/day)	3.4	<u>2.5</u>	4.2
walking for exercise monthly freq.	14.4	14.6	10.7
walk to work/school monthly freq.	7.8	9.8	5.6
bicycle for exercise monthly freq.	1.1	1.4	0.6
bicycle to work/school monthly freq.	0.8	1.1	0.3
daily energy expenditure (kcal/kg/day)	2.7	3.2	2.4
body mass index	24.3	24.2	24.6
high blood pressure (likelihood)	0.1	0.1	0.1

Average of postal code values

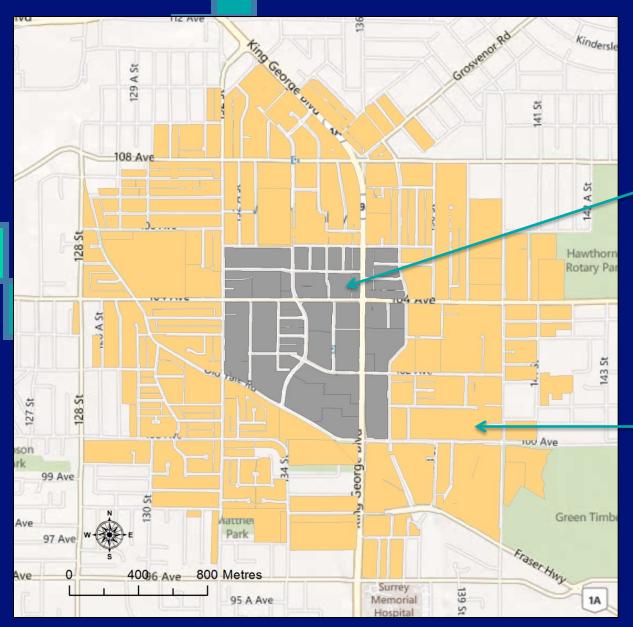
** Population weighted average of postal code values


2011 Vancouver Walkability Surface

Surrey Central Station

Change Scenario Assumptions

Transit. Although service frequency is expected to increase along existing bus routes and the Skytrain station is expected to become a major transit hub for new rapid transit services in the Surrey region, no new stop locations were added to the study area.


Streets. The street grid matches the planned street network as closely as possible.

Parks. The public plaza planned for Surrey Central Station was designated as park land.

Food retail. New food locations were added to support the planned increase in population; they were located in areas where commercial and mixed used development is planned to occur.

Sidewalks. All roads in the redevelopment scenario were assumed to have 100% sidewalk coverage.

Trails. A new north-south trail was placed through the polygon containing the planned public plaza.

Study area (grey polygons Impacte d area (orange polygons

SCS Study Area Parcel-Based

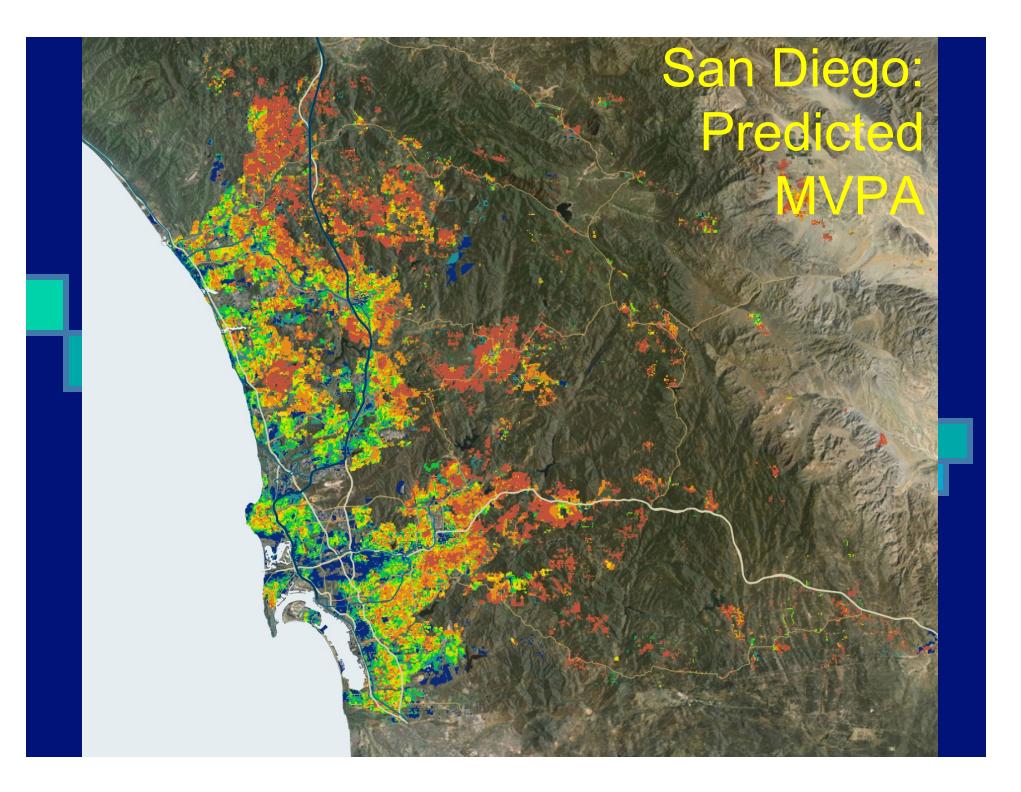
SCS Scenario Summary

(unweighted average)

Variables	Existing Conditions		-	Change Scenario 1: SCS Plan	
	Study	Buffered	Study	Buffered	
	area	study area	area	study	
	postal	postal codes	postal	area	
	codes	(n=39) ⁷¹	codes	postal	
	(n=39)		(n=39)	codes	
	10			(n=39)	
Net residential density (residential	17.9	10.5	101.0	33.6	
units per residential acres)					
Land use mix (0-1) ⁷²	0.11	0.71		0.57	
Retail floor area ratio	0.20	0.29		0.56	
Intersection density (count/sq k	47.0	60.9	91.0	73.8	
Transit density (count/sq km)	33.0	27.6	33.0	27.6	
Number of intersections	47	207	91	251	
Number of transit stops	33	94	33	94	
Pedestrian-accessible roads (km)	14.2	57.8	20.0	63.6	
Bicycle Facilities (km)	10.6	36.6	21.6	47.6	
Trails (km)	<mark></mark> 5.7	21.8	7.2	22.3	
Schools	D	4	0	4	
Food locations	53	93	73	113	

Estimated Outcome v=Values for <u>Study Area</u> (SCS polygon count =39)

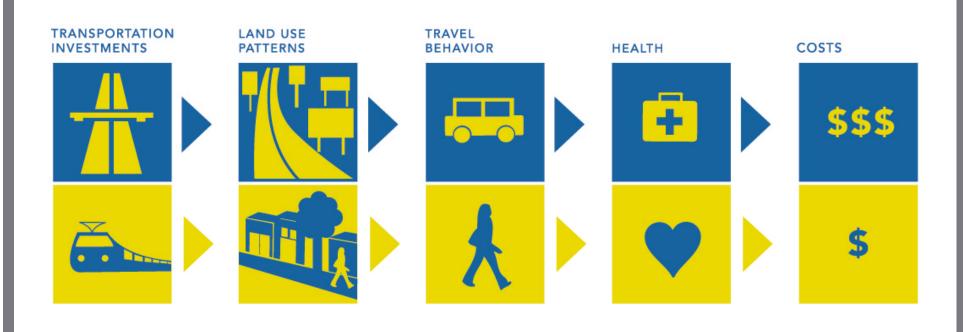
Outcome	SCS Existing Conditions*	Change Scenario 1: SCS Plan*	
average active trips/person/day	0.24	0.46	
average transit trips/person/day	0.61	0.74	
average automobile trips/person/day	0.89	0.52	
average trip kilometers/person/day	23.77	22.40	
average CO2 generated from vehicles (kg/household/day)	4.74	3.73	
walking for exercise monthly freq.	13.91	14.23	
walk to work/school monthly freq.	7.97	8.44	
bicycle for exercise monthly freq.	0.57	0.65	
bicycle to work/school monthly freq.	1.26	2.54	
daily energy expenditure (kcal/kg/day) ⁷³	1.40	1.55	
body mass index	24.92	24.86	
high blood pressure (likelihood)	7.82%	7.68%	


*Unweighted average of postal code values

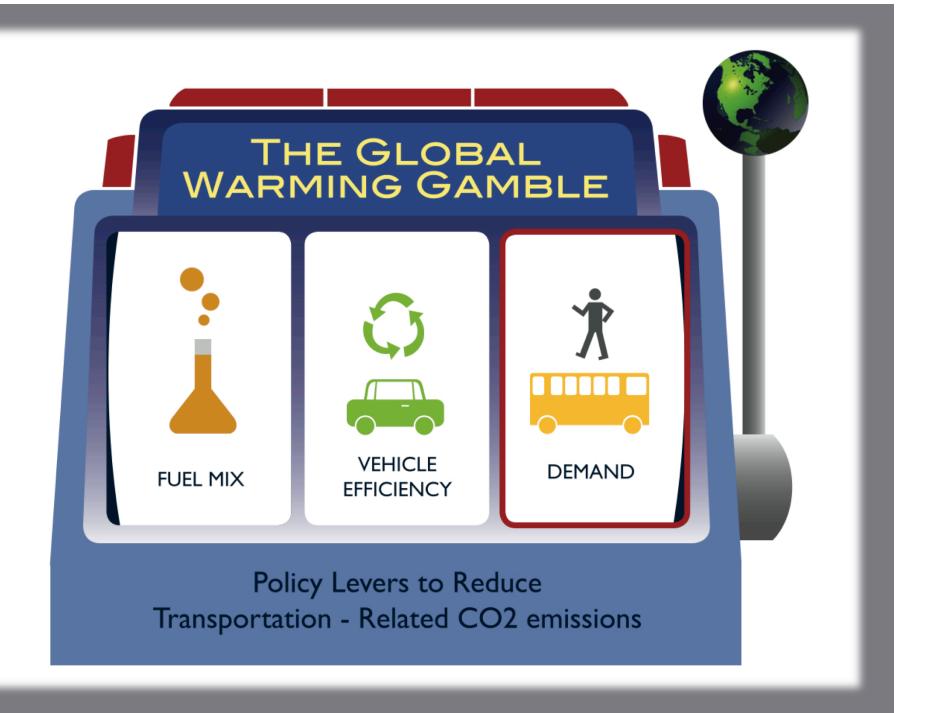
Vision California – Urban Footprint

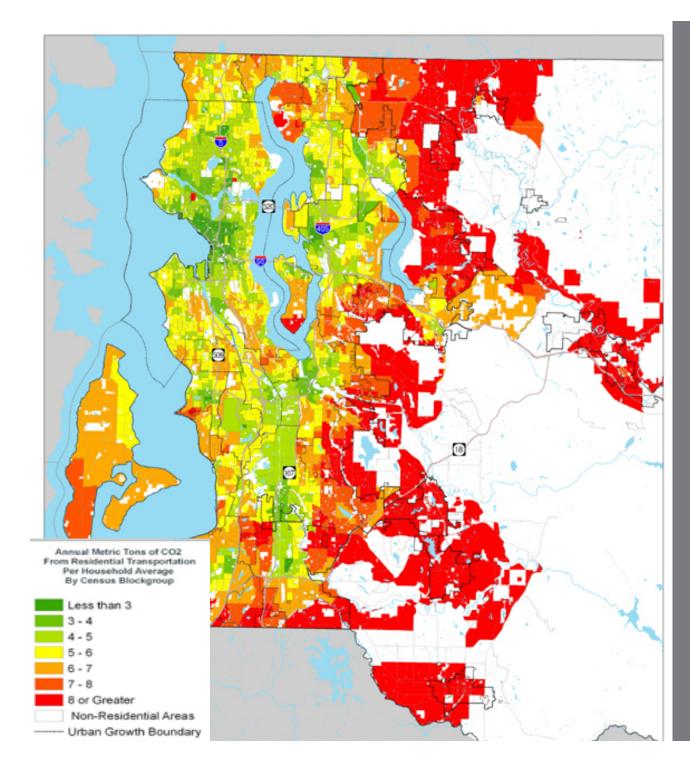
CALIFORNIA'S URBAN FOOTPRINT MODEL

Data source	Sample	Built environment inputs	Spatial unit for built environment analysis	Demographic/ socioeconomic inputs	Health outcomes
King County Neighborho od Quality of Life Study (NQLS)	1,228 adults	Walkability (composed of land use mix, street connectivity, net residential density, and floor-to-area ratio)	1-kilometer buffer of respondent' s home	Gender, age, education, ethnicity, number of children under 18, household income, vehicle ownership	BMI, objectively measured levels of physical activity, depressive symptoms, social cohesion
SMARTRAQ Atlanta Regional Commission Household Travel Survey	16,873 participants 5 years or older	Walkability (composed of land use mix, street connectivity, net residential density)	1-kilometer buffer of respondent' s home	Gender, age, education, ethnicity, number of children under 18, household income, vehicle ownership	BMI, transportation- related physical activity, time spent in automobiles, social cohesion



The Hidden Health Costs of Transportation




Kavage, Frank, and Kolian 2010 American Public Health Association

HOW TRANSPORTATION IMPACTS HEALTH COSTS

"The Hidden Health Costs of Transportation" - Frank et al 2010 American Public Health Association

Final Map of CO2 emissions from transportation

Includes: Local urban form (land use mix, intersection density, retail FAR) Regional location (auto travel time Transit accessibility & travel time Demographics

Driving 1/3 As Much in 2050

2050 Payoff Scenarios	VEHICLE EFFICIENCY	FUEL MIX	DEMAND
MAJOR PROGRESS	47	-35%	8.4
TECHNOLOGY BREAKTHROUGH	61	-65%	20.9

Brookings Draft Report – King County

Conclusions

- Evidence is quickly mounting on the health impacts of community design The ability to apply the evidence is also growing • There is a latent demand for walkable places More research is needed to understand the type of gaps between supply of and demand for residential environments Designing communities that fully integrate health care is essential to meet health and
 - environmental goals of the 21rst Century

Quality of Life

Environmental Quality Air Quality and Greenspace

Human Behavior Travel Patterns and Physical Activity

Built Environment Transportation Investments and Land Use

For More Info:

WWW.UD4H.COM